
Convective Difference Schemes 
By K. V. Roberts and N. 0. Weiss 

1. Introduction. In this paper general methods are developed for numerical 
solution of the partial differential equations for the convection of a scalar (e.g. 
density) or a vector (e.g. magnetic 'field). The difference schemes are correctly 
centred in both space and time so that the modulus of the amplification factor is 
exactly unity. They are also conservative and have fourth order accuracy. The 
methods are applicable in two or three space dimensions and on curvilinear as well 
as Cartesian meshes. They can be used for either linear or nonlinear problems. 

We consider finite difference schemes for the numerical solution of the hyper- 
bolic partial differential equations 

(1.1) I = - div F at 
and 

(1.2) = -curl E. at 
The dependent variables can be represented on a fixed Eulerian net with charac- 
teristic spacing Ar and we aim to establish explicit methods that are accurate in 
three space dimensions. In general, the total machine time required for a problem 
then varies as (Ar)-4; it is therefore important to devise a method of solution that 
is both efficient and precise. The numerical techniques have been developed for 
solving magnetohydrodynamic problems in three dimensions and examples are 
taken from this context. However, the methods may be generally applied. Their 
development is facilitated by adopting a physical approach. 

More specifically, we consider the Eulerian equations 

(1.3) -p = -Vi .(pu - np) 

and 

(1.4) = V A (u A B-2V A B) at 
for the convection of scalar and vector quantities (density and magnetic field) by 
a velocity field u with magnitude U in a region of dimension L, where the diffusion 
coefficients -ql and 2 are both small (i.e. the P6clet number, UL/'01, and the mag- 
netic Reynolds number, UL/'12, are both large). The vector equation (1.4) must 
be solved subject to the condition 

(1.5) div B = 0 

and in many problems the flow can be regarded as incompressible, so that 

(1.6) divu = 0. 

Received March 11, 1965. 
1 We assume that diffusion is weak compared with convection, so that the equations are 

essentially hyperbolic. If they were parabolic, the total computing time would vary as Ar-5 

and it would be advisable to use implicit methods. 
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We insist that magnetic flux must be conserved exactly throughout the finite 
difference process. Where (1.6) is applicable, its difference analogue has similarly 
to be satisfied. 

The difference schemes are first illustrated by considering Equation (1.3) in one 
dimension, when (1.6) implies that u is constant. The problem is then linear and 
its treatment is consequently simple. Stability and accuracy are discussed in ? ?2-4 
where we emphasize the importance of choosing schemes that are correctly centred 
in both space and time. ? ?5 and 6 contain a detailed discussion of methods for 
solving (1.3) and (1.4) in two dimensions and, finally, we indicate in ?8 how three 
dimensional problems might be tackled. The methods described are suitable for 
solving nonlinear problems (in which u also is a dependent variable) but solution 
of the equation of motion must depend on details of the particular physical sys- 
tem and this will not be discussed here. 

Equations such as (1.1) and (1.2) are described as conservation laws [1, 2]. 
The continuity equation states that the increase of the mass within a given volume 
is equal to the total flux of matter into that volume, while Faraday's law equates 
the rate of change of magnetic flux across a surface to the integral of the electric 
field along a line bounding that surface. For finite difference approximations the 
integral formulations 

(1.7) Af p dr -ff F-dS dt 

and 

( 1.8) /vIA B*dS= -fi E*d dt 

of the conservation laws are more convenient than the differential equations (1.1) 
and (1.2). We therefore regard these equations as integrated over elements of 
volume or area defined by mesh points: thus the value of p corresponding to a 
given point on the mesh represents the average density of matter within a box 
surrounding that point. Each component of B likewise represents the magnetic 
flux across an area normal to that component and centred on the point. Similarly, 
F or E must be defined as double averages, over elements of surfaces or along 
lines respectively, as well as over a time interval At. The finite difference scheme 
must then itself be conservative: that is, Equations (1.7) and (1.8) must apply 
exactly to all regions that can be built up from the basic elements mentioned above. 
Only such schemes are acceptable and we furthermore require methods that have 
fourth order accuracy. 

Errors in finite difference processes are mainly caused by the presence of Fourier 
modes with wave lengths of only a few mesh intervals. Moreover, in a practical 
computation it is cheaper to reduce At than it is to shorten Ar. We therefore devise 
schemes in which the error is of fourth order in Ar but only of second order in At. 
But the accuracy is not impaired so long as 

(1.9) ~ ~ ~ ~ /UAtY < (1.9) ( lvAr ? 

and it is sufficient to have (UAt/Ar) <1/4. 
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The integral formulation of the equations simplifies the development of these 
schemes. In addition, it gives a precise meaning to conservation. When the velocity 
u is constant, integral and differential formulations lead to the same difference 
formulae. If u is a function of position, the two approaches diverge for a scalar and 
differ entirely for the vector field B. 

The treatment of diffusion when tql and fl2 are small is discussed in ?7. To a close 
approximation the density and magnetic field are then convected with the fluid. 
Numerical errors inherent in the treatment of the convective operator (u . V) 
could be avoided by adopting a moving Lagrangian mesh. In one dimension, this 
is nearly always the best approach. For coupled magnetohydrodynamics equations 
in several dimensions, the mesh distortion is so severe that Eulerian schemes may 
be preferable. Conservation can be applied to either type of mesh, for example, 
Faraday's law (1.8) may be expressed either in fixed or in moving co-ordinates. 

The general discussion is presented in terms of Cartesian coordinate systems. 
The transition to polar co-ordinates is straightforward and is considered in the 
penultimate section. Our emphasis throughout is on the relationship of the physics to 
the numerical procedures and on the choice of practical meshes and difference 
schemes. We hope that the methods described will prove useful in tackling real 
problems. The notation demands many suffixes but we have endeavoured to keep it 
consistent. 

2. Centred Difference Schemes in One Dimension. The prime requirement of a 
difference scheme is that it should be stable; we develop schemes that are also 
conservative and free of numerical dissipation and whose truncation errors are of 
fourth order in the mesh interval. These distinctions are best illustrated by consider- 
ing the one dimensional convective equation 

(2.1) ap -u P 

with u constant, whose trivial solution is 

(2.2) p(x, T + t) = p(x - ut, '). 

(This problem merely serves as a model for multidimensional Eulerian calculations; 
in practice, (2.1) should be integrated along characteristics, i.e. using a Lagrangian 
mesh.) In this section we discuss stability and numerical damping and demonstrate 
the advantages of difference schemes that are correctly centred in both space and 
time. 

Let p be defined by values pjn at mesh points in the x - t plane with co-ordinates 
(xj , tI) = (jAx, nAt) where j, n are integers. The values of pjf+l are calculated 
from p7 by some difference scheme which approximates to (2.1). The error is 

(2.3) = p7n _ p(jAx, n&At). 

Usually, At and Ax are of the same order2 and the difference scheme is said to be 
accurate of order p if after a single time step 

(2.4) 1 Ej I < O(Atp+ ). 

2 When Ax >> uAt it is more appropriate to express the error in terms of the mesh interval 
(see ?4). 
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It is evident from (2.2) that the evaluation of pjn+l can be regarded as an 
interpolation problem. Linear interpolation between p-' 1 and p?' yields the most 
obvious Eulerian approximation to (2.1). The derivatives are replaced by first 
differences and Op/Ox is estimated at the initial time tn: 

(2.5) n+l n :L (n 
n (2.5) P = p7 - 2g(pJ+1 - Pi-l) 

where 

uAt 
(2.6) Ax 

This scheme has first order accuracy but is well known to be unstable; to first 
order, it is in fact an approximation to 

(2.7) p= _ U - - -UAt p 
Ot Ox 2 OX2 

whose solutions grow exponentially with time. This is because Op/Ox has been 
estimated at t1 instead of being centred, like the time difference, at tn+1/2. 

The simplest expedient for preventing instability is to interpolate between two 
adjacent points at the original time level. This leads to the "one-sided" difference 
scheme, originally suggested by Lelevier [3], in which (2.1) is represented by 

(2.8) nl= pn1 - J,'(fpl - p7-I-1) 

where 1 is chosen so that 1< ? < 1 + 1 andg' = A- 1. In this form, the scheme is 
unconditionally stable and has first order accuracy; for i 1 it approximates to 
the differential equation 

(2.9) at O - x + 2 O U x Axx( - ax2 

The instability associated with (2.7) is now masked by a "numerical diffusion" 
whose effects are easily demonstrated by making a Fourier transform of (2.8) 
and taking the component p(k) with wave number k. (The range of k is 7r/JAx ? 
k < ur/Ax, where J is the total number of mesh intervals in the x-direction.) We 
define the amplification factor X(k) by 

(2.10) pn '(k) = X(k) p (k) 

and the von Neumann condition for stability [3] is that 

(2.11) 1 X ? < 1 + O(At). 

For the one-sided difference scheme, 

(2.12) 1 2 = 1-4'(1 - ') sin2 (UkAx) 

and this stability criterion is satisfied. Now the true solution of (2.1) has 

(2.13) X = exp (-igkAx) 

with I X = 1 and the numerical error, which produces anomalous damping, is 
apparent from Table 1. (Error in the argument of X leads to dispersion, which will 
be discussed in ?3.) The approximation improves as 1,4 1 and kAx tend to zero but 
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TABL1R 1 

Damping in First and Second Order Schemes 

One-sided Three-point 

kAx 

0.05 0.25 0.5 0.05 0.25 0.5 

18? .9977 .9908 .9877 1.0000 .9999 .9998 
300 .9936 .9746 .9659 1.0000 .9995 .9983 
450 .9860 .9435 .9239 .9999 .9975 .9919 
600 .9760 .9014 .8660 .9997 .9926 .9763 
900 .9513 .7906 .7071 .9988 .9703 .9014 

1200 .9260 .6614 .5000 .9972 .9318 .7603 
1800 .9000 .5000 0 .9950 .8750 . .5000 

the finite differences are naturally inadequate for wave lengths close to the limit 
2Ax. The major weakness of this difference scheme lies, of course, in the strong 
numerical damping. Since the scheme is accurate only to first order, dissipation 
remains important even in the limit At -> 0; the number of steps per unit time, N, 
becomes infinite and the total amplification factor 

(2.14) I X IN (2u sin2 (1 kAx) 
Ax 

The strength of this damping is clear from Figure 1, which shows the total amplifica- 
tion factor after a mode has been transported through a distance Ax, plotted on a 
polar diagram as a function of kAx. Actual damping of a humped profile is illus- 
trated in Figure 2(a). Thus first order schemes are inadequate if accuracy is re- 
quired.3 

Three point interpolation allows second order accuracy. The simplest such 
scheme is 

(2.15) = - 
_ 

4( 1 - 1)p7+i + 2,pn - (1 + A)p7 1] 

for which 

(2.16) 1 -X 12 = 1 - 4g2(1 _ g2) sin4 ('kAx). 

This is stable for |,4 1 ! 1; numerical damping is still present, as is shown in Table 1 
and Figure 2(b), but this becomes insignificant as i -- 0, when 

(2.17) I A IN = [1 _ 
O(g2)]N 1. 

This scheme is equivalent to using equation (2.1) itself to provide an approxima- 
tion to the time-centred spatial derivative by writing 

'(ap~n+12 ap 1 1 a2p ) a 1 2 
(2.18) V1x) - kX + Atk9x4t) y9) ULA 9 

3 Nevertheless, the one-sided scheme preserves the sign of positive definite quantities, as 
do Lagrangian methods also; this property is not shared by space-centred Eulerian schemes. 
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FIGURE 1. One-sided derivatives: numerical damping as At -- 0. The modulus of the total 
amplification factor after a time Ax/u (so that each mode should have been transported through 
one mesh interval) is plotted on a polar diagram as a function of the angle kAx. 
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FIGURE 2. Numerical damping in first and second order schemes. The convection of a 
Gaussian profile with unit velocity on a mesh with Ax = 1/20, } = 0.125, subject to periodic 
boundary conditions. Curves a, b, c, d show profiles at t = 0.0, 1.0, 2.0, 3.0 respectively. (a) 
One-sided derivatives. (b) Three-point method. 
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This method was introduced by Lax and Wendroff [4], [5] and has been exten- 
sively used and developed. Numerical damping is still present but this is sometimes 
advantageous in eliminating unwanted high wave number modes. On the other 
hand, the method can become very complicated with equations less simple than 
(2.1).4 Moreover, the physical significance and the magnitude of the diffusion may 
be difficult to assess. We prefer to exclude dissipation from the convective equation 
altogether, by making I X I identically unity, and to include a separate diffusion 
term explicitly when this proves necessary (see ?7). A similar approach has been 
adopted by Kreiss [7]. 

Schemes with I X I = 1 are readily devised. It is sufficient that all differences 
should be correctly centred in space and time about the point (xj, tn+1l/2). Such a 
scheme can be built up on two time levels by combining terms to form a difference 
equation 

(2.19) Ej a (n+/ - n+) 0 

with real coefficients a, . The amplification factor then satisfies 

(2.20) XE alelO - E ale10- 0 

where 

(2.21) 0 kAx. 

This has the form 

(2.22) AX - A* = 0 

(where A* denotes the complex conjugate of A) so that I = 1 for all values of 
A and 0. The conditions under which it is necessary to adopt a scheme of the form 
(2.19) will be discussed elsewhere. 

3. Nondissipative Difference Schemes with Second and Fourth Order Accuracy. 
We have shown that it is possible to devise difference schemes that are correctly 
centred in both space and time and for which I X I is identically equal to unity. 
Moreover, these schemes can be expressed in conservative form (see ?4). We 
give two explicit second order methods in this section. Their solutions converge to 
that of the differential equation as Ax -- 0. But this limit cannot be attained in 
practice. In three space dimensions the total computing time varies inversely as 
the fourth power of the mesh spacing Ar. The minimum possible space interval, 
/Ar0, thus varies inversely only as the fourth root of the available machine time (or 
the programming efficiency or computer speed). These latter would have to be 
increased by a factor 104 merely to reduce Aro by 10. For practical purposes, there- 
fore, we have to regard Aro as a fixed quantity and to devise methods which then 
achieve the maximum accuracy. We therefore describe two schemes with fourth 
order accuracy. These schemes are stable provided that the Courant-Friedrichs- 
Lewy criterion is satisfied, i.e. so long as the domain of dependence of the difference 
equation includes that of the differential equation itself. 

4The Lax-Wendroff method is easier to apply if it is split into two steps [6] but the same 
accuracy cannot be obtained without halving the mesh interval in each dimension. 
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Angled derivative scheme. Suppose the integration sweeps in the direction of 
increasing x for each value of t. When we are about to calculate pj"+l the values of 
Pkn (1 < k < j) and Pkn+ (1 < k ? j- 1) are available. Thus we can use the 
"angled derivative" centred on (x;, tnl1/2) to produce a difference scheme with 
second order accuracy [8]. This can be written (see Figure 3(a)) 

n+1 X XP X n+1) (3.1) Pi = P- -(Pi- Pj- 1) 

where 

21 
(3.2) 1+ 3i. 

Only the latest value of p available at each point appears in (3.1).5 The value of 
the amplification factor depends on the sign of Ai and it is generally necessary to 
alternate the direction of integration with each time step so that the resultant 
value of X is the geometric mean of X(,.) and X(-,u). 

The domain of dependence of (3.1) includes all the points from x1 to x; at time 
t,' but only xj and xj+1 at the original time level. Thus the proof that I = 1 for 
all Au in ?2 appears to contradict the Courant-Friedrichs-Lewy criterion when ,. < -1. 
This paradox can be resolved: for (3.1) must in general be regarded as implicit 
if the boundary conditions are to be satisfied. Even so, any error either in setting 
the boundary value or in calculating an interior point will be magnified as the 
sweep proceeds if I 01 > 1. In order to avoid the spatial amplification of rounding 
errors it is necessary that the influence of a point should diminish as the distance 
from it increases. For the angled derivative scheme this imposes the condition 

(3.3) -1 < , < 2 

which has been verified by numerical tests. 
Staggered mesh. An alternative approach, originally suggested by von Neumann, 

uses a staggered mesh [11] (see Figure 3(b)). If pj is defined at tn, tn+l, then its 
neighbours pjil are defined at the intermediate level tn+?12. Any space difference on 
this level is automatically centred in time. The derivative Op/Ox can be represented 
by an arbitrary combination of differences at integral and half-integral time levels. 
The modulus of the amplification factor will be exactly unity if all the differences 
are correctly centred in both space and time: this means that the difference equa- 
tion takes the form 

(3.4) E a,(P.f2 - P1+21) + Z b( pn+12' - n+1/2 ) 0 
l l 

For X then satisfies 

(3.5) AX + 2iBX'/2 -A* = 0 

where 

(3.6) A = E ale-2ti and B = E bi sin (21 - 1)0. 

Then 

(3.7) <x1/2 - 
[iB i (AA* 

- 
B2) 1"2] (3.7) 

~~~~A 
5 A similar method was suggested by Saul'ev for solving the diffusion equation [9], [10]. 
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n+I 
t x 0 

a)** 

X_?1 Xj Xj+j 

tn+ -Xx 

b) I t 

Xj-2 Xj-1 Xj Xj+ I Xj+2 

FIGURE 3. Conservative difference schemes with second order accuracy. (a) Angled deriva- 
tives. We know values of p at the points denoted by crosses in the x - t plane and, implicitly, 
at (xi, tn+1). These values provide estimates of p at the points marked by asterisks, which in 
turn give a difference which is properly centred in both x and t. (b) Staggered mesh. Here p is 
calculated at the points where its value is required, leading to a mesh staggered in space and 
time. 

and 1 X 1 = 1 provided that 

(3.8) B2 ? AA*. 

Three-level schemes (unlike the two-level ones discussed in ?2) are only condi- 
tionally stable. 

The simplest scheme is 
(39) 'n+l n 1(n+l/2 n+?1/2 

(3* .9P Pi i jP+1 - Pi-1) 

This has second order accuracy and j X j = 1 for j /i I < 2. 
After one time step, the phase of a Fourier component should change by an 

amount 

(3.10) 0 t kAx=-MO. 

The corresponding phase shift for the angled derivative method is 

(3.11) sin' 1 +2(1-cos ) 1 + l~ - Cos 0) 

while that for the staggered scheme is 

(3.12) 02 = ?2 sin-' (1,u sin 0). 

There are two solutions to (3.9), one of which represents a disturbance travelling 
in the wrong direction which is only eliminated if the initial values are correctly 
set on both time levels [12]. As tz -> 0, the ratios 01/4o and 42/4o both tend to sin 0/0, 
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TABLE 2 

Velocity Dispersion 

Second order Fourth order 
kAX 

42/4)0 ?03/00 4)4/4)0 

180 .9836 .9992 .9997 
300 .9549 .9947 .9976 
450 .9003 .9753 .9883 
600 .8270 .9304 .9648 
900 .6366 .7427 .8489 

1200 .4135 .4652 .6203 
1800 0 0 0 

FIGURE 4. Velocity dispersion in the limit /i 0 for second and fourth order schemes. 
The ratios os/oo(a) and 04/qo(b) are plotted on a polar diagram as functions of the angle kix. 

which is listed in the first column of Table 2 and displayed in Figure 4. The shortest 
wave length components (0 = 7r) do not move at all and even the wave length 
4Ax has only two-thirds of its proper speed, although the longest wave lengths 
move with nearly the correct velocity. This dispersion at high wave numbers is the 
most serious error remaining in the difference schemes and its effects are illustrated 
in Figure 5(a). To diminish them, it is necessary to develop approximations that 
possess fourth order accuracy. 

Fourth order scheme on staggered mesh. The simplest fourth order scheme uses 
four values of p at tn+l/2 to estimate the spatial derivative: 

+12 n+1/2 n+1/2 n+1/2 

+ AT1 - 2)(n - 3Pi-' + 3Pi+1 - Pj+3 

This has IX = 1 forum < 2 and the phase shift is 

(3.14) 3) = ?42 sin-' ['A sin O{6 + (1 - 1/2) sin2 0}]. 



282 K. V. ROBERTS AND N. 0. WEISS 

The limiting values of 03/4o as 4 -- 0 are displayed in the second column of Table 
2: the dispersion is noticeably less than for second order schemes. 

Combined fourth order scheme. A slightly more accurate formula can be devised 
by combining the two second order schemes described above. Then 

1 
n+1 n 2A (pn+1/2 n+l/2 n n+1 (3.15) Pi = P 1 - 1AM [(I + 2M)j+ - )-M(pj+2- Pi-2 ) 

where 

(3.16) ( 1A2) 6(1 + 'A) 

Once again, X f = 1 for < 2, while the phase shift is given by 

(3.17) 04 =-2 tan-, (PQ - RS) 
(PS - QR) 

where 
P = 1 W-uMsin20, Q = 1Lu(1 + 2M) sinG, 

(3.18)2 
)R = 2 iM s20, S = :[1 - 1s{2u(1 + 4M) + 4M} sin2 0]1/2. 

As ,u -* 0, the ratio 04/00 tends to 

(3.19) is sin 0(4 - cos 0) 
30 

which is listed in Table 2. The improved accuracy is evident in Figure 4. 

4. Integral Formulation and Conservative Difference Schemes. The difference 
schemes discussed in the last section can all be expressed in conservative form. In 
order to do so, it is convenient to express the differential equation in terms of the 
integral formulatin of (1.7). This approach facilitates the expression of finite differ- 
ences in more than one dimension and on curvilinear meshes. For the remainder of 
this paper we shall adhere to this integral formulation in order to express the con- 
servation laws more clearly: the fundamental quantities pj and u, will be regarded as 
appropriate averages rather than values of p and u at the point x; . In one dimension, 

pi' represents the average value6 of p over a distance 2Ax at the time tC: 

(4.1) p A 2x f p(x, tn) dX. 

The velocity u may also vary with position (so the flow will no longer be regarded as 
incompressible). Following (1.7), we can express the increment in pj in terms of 
fluxes across the boundaries at xjil: 

(4.2) ( n+l _ p7n) .2Ax = _(F~+j - Fop) -At. 

Here Fkx -At represents the total mass flow (in the positive x-direction) across the 
interface at Xk during the time interval (tn, tn+l). Thus the fluxes FkX are time aver- 

6 This definition is chosen for use on a staggered mesh. For two-level schemes it implies 
that p is defined only at each alternate mesh point. 



CONVECTIVE DIFFERENCE SCHEMES 283 

ages at precise points in space, whereas the densities pj( are space averages at a 
precise time. 

We can regard (4.2) as expressing the change in mass of a "box" centred at x; 
in terms of the fluxes of matter across its boundaries. These boxes can be combined 
to build up volumes; then conservation demands that the increase in mass of any 
such volume should equal the flow of matter into it. In one dimension, exact conser- 
vation merely requires that the flux out of the box centred on x; , across the inter- 
face at xj+i , be equal to the flux across that interface and into the box about xj+2. 

Now the equation (4.2) is exact: in a difference formulation we represent the 
fluxes in terms of the values pi' etc. and thereby introduce truncation errors. For 

(4.3) F5x = Ujp/ 

where pfx (like Fjx) is a spot value at x; but a time average over (tn, tn+l): 

(4.4) Pi 
=A/t 

p p(xi t) At 

These quantities are "contracted" in the x-direction relative to the averages pi7 etc. 
from which they must be estimated. A Taylor expansion in space and time gives 

X P r n+1 /2 ( n 1 n+l1) Pi =3 4P -(j+ +j-l) 

(4.5) =( + 

t 
(A Ax tP 

1A 
a P + 0 (AX4) Ot Ox 2 

+OAx4 

or 

(4.6) x =1 13n+l/2 1 n+l/2 n+l/2yi - 1 At2 2P + O(AX4). (4.6) Pi = 12 [13 Pi 2j+2 +j-2 24 at2 

Second and fourth order conservative difference schemes can be derived from these 
expressions. 

Second order schemes. The scheme (2.5) is conservative but unstable and the one- 
sided scheme (2.8), though stable, is not conservative. However, schemes that are 
properly centred can always be expressed in conservative form. The angled deriva- 
tive scheme (3.1) can be reformulated in these terms if we put 

(4.7) F/ = 2 j(p2-f + PY+i) 

which (see Figure 3(a)) is clearly a first order approximation to (4.3). Similarly, the 
staggered mesh formula (3.9) can be rewritten with 

(4.8) Fix = Ujpjn+2 

to achieve the same order of accuracy. Conservation then applies separately to the 
two sets of boxes centred on x;, XJ?2 ... and on xjl, Xj?3 * i i.. 

Fourth order schemes. In a two dimensional calculation, halving the time step 
doubles the computation time, while halving the mesh interval increases it eight- 
fold. Thus it is more practicable to diminish the ratio At/Ar than it is to decrease the 
interval Ar itself. The time step must in any case be chosen to keep ,u within the limit 
for stability; we shall impose the further restriction that At be small enough to make 
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A2 << 1. When 1A -> 0 the error -j' defined by (2.3) depends only on Ar; we call a 
difference scheme accurate to order p in the mesh interval Ar if after one time step 

(4.9) Ej' O(At AXP) as -? 

The difference schemes we shall describe are accurate to fourth order in Ax but only 
to second order in At. The significance of this will be discussed below. 

From Equation (4.6) we can express the flux as 

(4.10) F = Au, [13p Y+"2 - 2(pY4+112 + j-+1/2)] 

This leads to a difference scheme which (when uj is constant) has I X = 1 for 
[ I < 7/12 and corresponds to (3.13) when A <z 1. The dispersion has already 

been shown in Table 2. 
The scheme based on (4.5) is more satisfactory. This gives 

(4.11) FX = luj[4pin~"2 - j(p7+i + p7-1)] 

In order to eliminate the error term of order AtAx, the direction of integration must 
reverse with each time step, i.e. (4.11) should alternate with 

(4.12) FP = luj[4pjn+1/2 - 2(P7-+iX + p7-)] 

If u is constant, I X = 1 for -2 <1 < 6/5 and (4.11) is equivalent to (3.15) with 
M = 1/6. In Table 3 the dispersion obtained with this fourth order scheme is tabu- 
lated as a function of / and 0; it is apparent that the accuracy is not substantially 
impaired even if 1A = 1/2. The computation illustrated in Figure 5(b) shows- the 
improvement produced by adopting this fourth order scheme. 

There are two reasons for demanding greater accuracy in Ax than in At. The higher 
time derivatives could be estimated by substituting from the differential equation 
(in which case (4.11) and (4.12) would lead to (3.13) and (3.15) respectively); 
however, this procedure becomes indecently complicated in more than one dimen- 
sion. Secondly, the error caused by terms of order At2 in (4.5) and (4.6) is insignifi- 
cant even for moderately large values of ,u (as can be seen from Table 3). The ratio 
of the term of order At2 to that of order AX4 in the error is 5/2 (,.t/0)2. The error caused 
by setting ,4 = 1/4, for instance, is negligible unless 0 < 200; but the whole difference 

TABLE 3 
Velocity Dispersion for Combined Fourth Order Scheme 

kAX 
0.05 0.25 0.50 0.75 1.00 

180 1.000 1.001 1.007 1.016 1.029 
300 .998 1.002 1.016 1.039 1.073 
450 .989 .996 1.021 1.064 1.131 
600 .965 .975 1.005 1.062 1.156 
900 .849 .854 .872 .907 .978 

1200 .620 .616 .618 .616 .618 
1800 0 0 0 0 0 
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FIGURE 5. The effects of dispersion. The convection of a Gaussian profile with unit velocity 
on a mesh with Ax = 1/20,,g = 0.25. Curves a and b show profiles at t = 0.0 and t = 4.0 re- 
spectively. (a) Second order scheme. (b) Fourth order scheme. 

scheme is bound to be sufficiently accurate for such long wave lengths. It is only in 
dealing with short wave lengths (0 _ 600) that the method becomes inadequate 
and there the effects of a finite time step are wholly unimportant. 

5. Convection of a Scalar in Two Dimensions. The one dimensional problem 
discussed so far has been physically trivial, although it served as an adequate 
vehicle for introducing numerical techniques. In two dimensions, interesting 
problems can be posed even when div u = 0. The Eulerian difference schemes re- 
quired are straightforward but careful extensions of those described already. (The 
advantage of using Eulerian schemes is that they can be extended to equations 
such as (1.3) which do not have a simple Lagrangian solution.) 

Once again, we express the differential equation 

(5.1) p _- -V.(pu) 
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in integral form as 

(5.2) A[ P dS]= -f pUU dl dt 

where Un is the component of velocity normal to the line element dl bounding the 
area S. Let us, for the present, adopt a uniform rectangular mesh with intervals 
Ax, Ay, so that mesh points have coordinates (Xi , Yk) = (jAx, kAy). Then we define 
the stored quantity P.,k as the average value of p over a box with sides 2Ax, 2Ay 
centred on (Xi, Yk), at the instant t': 

1 k+1 rj+1 
(5.3) Pi k = 4AxAy f / p(x, y, t ) dx dy. 

If the velocity u = (u, v) is steady, we define the stored components Ujk and Vi k as 
the average flows across line elements of length 2Ay, 2Ax respectively, centred at 
thepoint (xj,yk): 

1 rk+d 1 rj+i 
(5.4) Uj, k = A kiu(xj, y) dy; Vi'k = J v(x, Yk) dX. 

2Ay J-1 2Ax Jj-1 Y 

Then the condition div u = 0 for incompressible flow, expressed as 

(5.5) 95U. dl = O 

in two dimensions, has the exact finite difference analogue 

(5.6) 2Ay(uj+lk - uj_1,k) + 2Ax(vjk+l - Vj,k-1) = 0, 

i.e. the net flow out of each mesh box is zero. 
The fundamental difference formula, corresponding to (4.2) is 

(57 Pjtk -Pj,k ) .4/x/y 
( x [(F+k - F1,k) *2Ay + (Fj,k+l - Fj,k-1) .2Ax] -At 

where 

1 pn+l k+1 

(5 A ; p(xj , y, t)u(xj 
, y t) dy dt, 

rn+1 i +1 
(5.8)Fk = 1 fUJn fiYi p(x, Yk , t)v(x, Yk , t) dx dt. 

Jk=2AtAx J J-1 
PX Y 

Now (5.8) expresses the fluxes as the average values of products. We can re-express 
them as the products of averages: 

FJk = PJik UJk + 3 Ay2 d + O(y y), 

F9,k = Pj,k Vjk + I AX2 P _+ O(AX4). Fjyt k Pi 3 
dx d9x 

Here P ,k and Py,k represent one-dimensional averages, contracted relative to pk+12/ 

in the x and y directions respectively: 

1 +l rk+1 

(5.0)Pi = 2AtA Ln J-1 p(xj , y, t) dy dt, 
(P5.10) y 2 n+l ii+ 

Pik=2At/$ J-1 p (x, yk ) t) dx At 
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These quantities must be so estimated in terms of the stored values of p as to 
produce a stable, conservative and accurate process. The first necessity is to deter- 
mine the optimum space-time mesh. It is essential that a value of p be available at 
the centre of each side of the box about a point. This restriction rules out the most 
obvious staggered mesh, in which the points at t"+1"2 would lie at the vertices of the 
boxes surrounding points at time t'. For the first estimates of p., k and p.,k would 
then be the means of values at adjacent vertices, e.g. pk = 2 ( pi,k+il + Pjkl1 ) and 
the amplitude of a Fourier mode with wave number k, would be multiplied by 
cos (k, Ay), which would lead to serious inaccuracies even for moderately large 
wave lengths. Averaging may only be carried out along the direction in which a 
quantity has been contracted. 

The optimum mesh is illustrated in Figure 6; it may be derived as follows. Sup- 
pose that (5.7) is being used to calculate Pjk~ from Pjk . All the requisite values of 
u, v and p at te'12 (in particular, Pn4+1jl'k2 and p~j8,+ 2) must be available. Then conserva- 
tion will apply over the net of points including p7.,k and labelled A in Figure 4. The 
calculation requires the sets C and D of points at tn+1/2; in order to advance their 
values to tn+312 the set of points B will be required at tn+l. Conservation applies 
separately to these but they are only coupled to mesh A through the sets C and D 
at the intermediate time level. There is thus a rectangular grid, with alternate points 
at different time levels; but this grid is made up of four independent subsidiary 
meshes, each with spacing 2Ax, 2Ay, on which the mass is separately conserved. 
Correspondingly, the solution of (5.6) represents four separate flows. A slight 
diffusion is desirable to keep these meshes all in step (see ?7). 

Second order schemes can be obtained as before. The angled derivative method 
gives 

1 n+l Pn 
(5.11) Pik =2(P-,k + Pj+lk)) 

n+1 nX 
A2 k = 12 NA- +jkltPik+l J 

I 1l CI- A CI A II O 

I 

D: BI D I B D I 
k+l X ---- X- O- X -O- X 

I Al Cl Al CI| Al l 
k 0--X- o- -X--o__X__o 

/ D BI DI BI DI I 

k-i1 - -X- -1 - -- -- - 1III: I l A l l Al l Al l 
X-2 -- X-- - -X-- X- 0 X 

j-2 j-l j j+l j+2 

fIGURE 6. Staggered mesh in two dimensions. Points marked with crosses represent the 
meshes A and B at integral times tP; points denoted by circles are on meshes C and D at 
times t'n+l2. 
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and has I X I = 1. Similarly, we have (corresponding to (4.8)) the staggered mesh 
scheme with 

(5.12) Pjk PJk = +/2 

This has I X j = 1 provided that 

(5.13) : /\xt] + j At < 
u 

2 

which is just the Courant-Friedrichs-Lewy criterion. 
Once again, these methods can be combined to give a scheme that is accurate to 

fourth order in Ax and Ay. The one-dimensional averages pi ,k and PJk can be ex- 
pressed in terms of the stored mean values by 

(5.14) Pjk 6 [8p j2k (p7 
P-i k + Pj+l,k)], 

(- (P,tkl + P14+1)] 

These have the same form as in one dimension; once again, the direction of integra- 
tion should be alternated with each time step. Simpler approximations are ade- 
quate for the first derivatives in (5.9); we therefore write 

F( X k = [Uj, k{8P jk1 - (P72 l + Pn+1,k)} 
(5.15) 

k 1 + 

+ ( Pjk+2 - Pi4k-2 ) (ujk+2 - Uj,k-2)] 

etc. and substitute into (5.7). The complete scheme is given in the appendix. 
If u is independent of position, I X I = 1 provided that 

(5.16) -2 < u? t + VA t < 
Ax Ay 

The effects of dispersion in two dimensions are illustrated in Figure 7, which shows 
the distortion of a circular hump as it is convected. The improvement effected by 
the fourth order scheme is very striking. 

Figure 8 shows the results of a run in which the density distribution was dis- 
torted by a sheared velocity field. The higher order method is clearly more accurate 
in describing variations over only a few mesh intervals. 

We have so far discussed only the linear problem where u is a known function of 
position but the treatment can equally be applied to nonlinear problems where u is 
a function of time which is computed from additional equations. The evaluation of 
the fluxes depends on how the stored values of u and v are defined and this will vary 
from problem to problem. For example, a two dimensional equation of motion 
solved in conservative form would lead to two dimensional momentum averages 
which would have to be contracted to yield the quantities required in (5.9). 

Boundary conditions. These have not so far been mentioned. Faulty treatment 
of the boundaries may vitiate the computation but the proper approach is generally 
straightforward to establish. The simple problem of incompressible flow in a 
rectangular region with rigid boundaries illustrates this point. 

The boundary condition is that the normal component of the velocity must 
vanish or, in integral form, that there is no flux across the boundary. Although div u 
vanishes if the fluid is regarded as a continuum, the finite difference analogue will 



5D 

6 
5 

Q5 6 

FIGURE 7. Dispersion in two dimensions: convection of a scalar by a constant velocity 
u (1, 1) on a mesh with Ax = Ay = 1/20, At = 1/80. The diagrams show contours of the 
scalar p at values of 0.85, 0.65, 0.45, 0.25, 0.05, and -0.05, numbered from 1 to 6 respectively. 
(a) The original distribution; a Gaussian hump, which should be maintained as the motion is 
followed. (b) The distribution at t = 1.5 (when the hump has been transported a distance 
3V\2) calculated with a second-order scheme on a staggered mesh. The hump, is distorted, its 
height has been diminished by 30% and negative values of p have appeared in the shaded 
regions. (c) The same but calculated by the fourth order scheme. The height is diminished by 
about 10%. 
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FIGURE 8. Convection of a scalar by a sheared velocity in two dimensions. The velocity 
corresponds to a stream function -1/r sin 7rx sin ry. Initially, there was a Gaussian hump 
at the point (3/4, 3/4) which has been drawn out by the shear in the velocity. Notation as in 
Figure 7. (a) Distribution of p at t = 3.0 (calculated by fourth order scheme with Ax = Ay = 
1/100, At = 1/200 to give accurate results). (b) The same, calculated by a second order scheme 
on a staggered mesh with Ax = Ay = 1/50, At = 1/100. The maximum value is reduced by 25% 
and negative values appear in the shaded regions. (c) As (b) but calculated by the fourth 
order method. The maximum value has been reduced by less than 20%. 
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FIGURE 9. Treatment of the boundary. 

not necessarily hold. Consider the box surrounding a point (xl, yk) on the boundary, 
where Ulk = 0 (see Figure 9). Then the total flux into this box is 

(5.17) F = Axt [PV]l,k-1 - [PV]l,k+1} - 2,Ay{ [PU]2,k} . 

If the flux in the y-direction were multiplied by 2Ax instead, then the analogue of 
div u = 0 would not hold and mass would accumulate in (or disappear from) the 
box because of this numerical error. In practice, it is easier to program the computa- 
tion by introducing fictitious points (XO, Yk) outside the boundary, setting Uok to 
zero and halving the stored values of Vlk then points on the boundary can be 
processed as interior points. Values of P1,k must be regarded as averages over boxes 
of area 2AxAy centred on (x312, Yk). Boundaries parallel to the x-axis can be treated 
similarly. Analogous precautions must be taken when there is a discontinuity in the 
velocity within the region. 

6. Convection of a Vector in Two Dimensions. In this section we consider the 
differential equation 

(6.1) = -curl E = curl (u A B) 
at 

governing a magnetic field in a perfectly conducting fluid. In two dimensions, B is 
described by a stream function (z-component of the vector potential) L such that 

B ( 
8a* 

Then 

a(I= (6.2) = 
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which can be solved by the techniques of ?5. Moreover, lines of force are simply 
contours of ' and can easily be plotted. Nevertheless, it is profitable to consider 
methods for integrating (6.1) directly in two dimensions, since these can be ex- 
tended to three dimensional computations (where use of the vector potential does 
not simplify the problem). We have compared fields computed to the same order of 
accuracy from (6.1) and (6.2) and found them to agree. 

We write (6.1) in integral form as 

(6.3) A f B dS =-fEdl dt. 

The numerical treatment of the curl in (6.1) is precisely analogous to that of the 
divergence in (5.1): as the divergence was expressed in terms of fluxes across 
surfaces, so the curl is given by circulations around the boundaries of an element of 
area. Then it is only necessary to estimate the relevant quantities appropriately and 
to ensure that over a closed surface 

(6.4) f B*dS = 0 

at all times, in a finite difference form analogous to (5.6). 
Let 

(6.5) B = (G. H). 

The stored values of G and H are defined as average fluxes across the surfaces of 
boxes assumed to extend for unit distance in the z-direction: 

1 k+1 
1 rj+1 

(6.6) Gjk = Lf G C (xj , y, tn) dy and Hjk = 1 f H(x, yk , tn) dx. 2Ay k-1 2AX JJ-1 

In order to express (6.3) in finite difference form, we need to estimate Ej,k, the 
average value over a time step of the z-component of E at the point (xi, Yk). Then 

(6.7) (Gj' - Gk) *2Ay = -(Ej,k+l - E,k1) ht. 

(6.8) (Hgnk - Hnk) .2Ax = (Ej+lk - EL,,k) .At 

The electric fields Ej,k represent spot values of the z-component of - (u A B) and 
can be written 

(6.9) Ej,k = (u ,kHi,k - vJ,k6 k). 

As in (5.10), the superscript letter indicates the direction in which an average has 
been contracted; thus the quantities on the right-hand side of (6.9) are spot values 
at the point (x;, yk) and, in the case of the magnetic field, averages over one time 
step: 

f n+ ( r n+X 
(6.10) G,k G(xj X Yk t) dt and Hk = J xj X Yk X t) dt. 

(The velocity is assumed to be steady and independent of time.) The field compo- 
nents in (6.9) must be estimated in terms of the stored averages GOk and Hin k . 

Only one of (6.7) and (6.8) need be solved; the other component can then be 
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obtained from (6.4). If we consider the flux out of the box centred at (xi, Yk) then 
Hj7,k+1 could be evaluated from (6.8) and Gj1i',k from 

(6.11) (HnZk+ - H7Mi!1) *2,Ax + (G74ik - G`f&,k) * 2Ay = 0. 

This procedure automatically ensures that the finite difference analogue of div B 0 
is satisfied. 

Second order schemes. Consider the box centred on (xi , Yk) in Figure 6. For a two 
level scheme, G must be defined at the points of mesh C and H at those of mesh D. 
For the angled derivative method we set 

(6.12) GY+lk+l = 2(Gi+lk + G+l,k+2), H+lk+l = 2(H`+i1 + H +2,k+l) 

etc. Suppose that the sweep proceeds over increasing values of y for each value of 
x and that we integrate H but set G from (6.11). Then we know all the quantities 
required for calculating HJ+1 except G n+1,k . But this value is known implicitly from 
(6.11) and we can thus simultaneously calculate Gj++'1,k and H1+'. 

On a staggered mesh, we simply take 

(6.13) Gj,k = G`;:12 Hj,k = HM j12 

The mesh is basically the same as that used for the scalar equation but the disposi- 
tion of quantities over the points is more complicated. There are in fact four separate 
meshes: A' and B' at integral time levels and C' and D' at intermediate levels. In 
each of these, G, H, u and v are defined at points of the meshes in Figure 4, as sum- 
marized in Table 4. All quantities u, v, G and H are defined at each alternate point 
in space on a given time level. However, conservation of flux in the form (6.11) 
applies only to the individual meshes A', B', C' and D'. Moreover, the two meshes 
at a given time level are only related indirectly, via those at the intermediate level. 

Fourth order scheme. The same staggered mesh can be used and the procedure 
follows that outlined for the angled derivative method. Thus, if we sweep over y for 
each value of x, new values of H may be found by integration while those of G are 
calculated from the flux conservation law (6.11). In (6.9) we set 

k= [8Gjn+ 12 - (CGj1 + Gnk+1)], 

(6.14) HJk = [8HYH = " - (H 1fk + H+lk)I, 

and substitute into (6.8). Before we can evaluate Hjk+l (and, from it, Gji++lk as well) 
it proves necessary to express Gj-l,k+i and Gj+1,k in terms of values of G and H that 
are currently available, by using (6.11). The full difference formula appears in the 
appendix. Once again, the directions of integration should be reversed after each 
time step. 

Integral formulation is more important for the vector than for the scalar equa- 
tion: it leads naturally and unambiguously to two equivalent expressions7 with fourth 
order accuracy in Ax and Ay, in which only four spot values of the velocity com- 
ponents appear. Moreover, flux is exactly conserved. By contrast, a fourth order 
treatment of (6.1) in the differential forms 

-= --(uH-vG) at ax 

7We could have chosen to integrate G and to set H from div B = 0. 
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TABLE 4 
Defining Quantities on a Staggered Mesh in Two Dimensions 

Mfesh G H u v Time level 

A' A B B A tn 

B' B A A B tn 

C' C D D C tn+112 

D' D C C D tn+1/2 

or 

(6.15) at = BVv - u*VH -HVu at 
would have involved more values of the velocity components without ensuring exact 
conservation of flux. Simplifying the expressions for ,2 <K 1 would also have proved 
tricky. 

In discussing these schemes, it has been supposed that values of uk and v1,k are 
already known. This will be so if they are independent of time but in a nonlinear 
problem spot values of the velocity components must be evaluated from the aver- 
ages that are available. If density and magnetic field are being evaluated then the 
velocity components cannot simultaneously be appropriately defined for both of 
them. 

The simplest boundary condition is that the normal components of both u and 
B should vanish at the walls (which must then be rigid and perfectly conducting). 
Then the electric field likewise vanishes and boundary points can be treated as 
interior points if an extra row is inserted as in Figure 9. 

7. The Introduction of a Slight Diffusion. The schemes outlined above are prone 
to two different numerical errors, which can be remedied by including a small 
diffusive coefficient. First, it is quite possible for values of quantities on each of the 
four independent meshes to differ by constant amounts; indeed, such differences 
will be produced on a staggered mesh by inexact initial values. Secondly, any 
numerical method, subtle though it may be, is bound to fail for variations on the 
scale of a few mesh intervals. Yet the velocity field will usually generate such fine- 
scale effects, whose computed behaviour will then be peculiar. This can be masked 
by inserting diffusion into the equations so that the fine-scale variations are 
obliterated [6]. 

The differential equations describe a nonlinear coupling between Fourier modes, 
by which energy is continually fed into higher and higher modes. A similar coupling 
is described by the difference equations, except that energy which ought to be fed 
into very high modes may appear in lower ones instead, since modes with wave 
numbers (ks, k,) and (k, + 21r/lAx, k + 2mir/Ay), where 1 and m are integers, 
cannot be distinguished. Any difference scheme will therefore couple the wrong 
modes for large k even if energy is conserved by the numerical process. Unless energy 
is removed by diffusion as it reaches these high wave numbers, physical errors will 
arise. 

In fact, the difference schemes were developed to study the equation 

(7.1) - = curl (u A B- curl B) = curl (u A B) + V2B 
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under conditions when the magnetic Reynolds number Rm = UL/q was very large 
and the time variation of B was slight. (Here U is a characteristic speed and L a 
length characteristic of the system; the resistivity is assumed to be uniform.) Then 
the curl of (u A B) almost vanishes and the residue is balanced by a small diffusive 
term. So it is more practical to accept the presence of the resistive term8 and then 
to ask: how large a value of Rm can be described adequately by the numerical process 
on a given mesh? A reasonable requirement is that diffusion should dominate con- 
vection for modes with a dispersion error of more than 5%. On a grid of 50 X 50 
points with a smooth velocity field, a second order scheme can treat Rm < 200 and a 
fourth order scheme Rm < 1000 with sufficient accuracy. This is confirmed in 
practice and the maximum value of Rm varies as the square of the number of mesh 
intervals J. An effective lower limit to Rm is set by assuming that the choice of At is 
not affected by the resistivity: then Rm _ J. 

For constant 7, the resistive terms in (1.3) and (1.4) can be approximated to by 
the Dufort-Frankel method [1]. To the scalar equation we add terms of the form 

At n+1/2 n+1/2 I n+) 
[( 2 [PLk + Pj-1,k ) - (Pik + PtV) 

(7.2) 

+ 7 [(A 2 k+l + Pik12) (P7k + P7+1)] 

This method is unconditionally stable and sufficiently accurate for our purpose so 
long as q is small. These resistive terms are incorporated in the formulae in the 
Appendix. If q is a function of position, the second differences can simply be altered 
to include this variation. Resistive diffusion causes the four meshes A', B C, and 
D' to relax exponentially to the same values with a time constant (Ax2/2,q). Since 
all the meshes are connected through the diffusive terms, one might expect con- 
servation on each mesh (and over the system as a whole) to be affected, but it can 
be shown that magnetic flux continues to be conserved. 

8. Extension to Three Dimensions. The higher order methods introduced in 
?4 extend the class of problems that can be tackled on a given mesh in two di- 
mensions. In three dimensions, schemes with this accuracy are essential. The 
necessary staggered mesh is illustrated in Figure 10: it can be thought of as the 
crystal lattice of NaCl with, say, sodium atoms representing points at integral times 
and chlorine atoms those at half-integral time levels. Thus there are two interpene- 
trating face-centred cubic lattices. Values of all three components of both u and B, 
and also that of p, have to be stored at each point on the mesh. 

The necessary difference schemes, though complicated, can be constructed on 
exactly the same principles as those of ?5 and ?6. We put 

(. ,k,1 - Pj,k,l) 8AXAYAZ = [(Fixlkl - Fkl1) *4AyAz 

? 
(F2,k+1,l 

- F ,k-,l)*4AzAx + (F ,kl+ - 
Fk,-1) 4AxAy]-At 

and 

(8.2) (G2ik + - G.k, 1) *4AyAz 
= [(E - E,k-l,1) *2Az - (Ej,kMl+l - Ey,k,l-1) .2Ay] - At 

8 If the actual resistivity were negligible, an artificial fourth order diffusion term, -7V4B, 
might be inserted: this would cut off the smallest modes much more steeply and tidy the calcu- 
lation, provided that it left the physics unaffected. 
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FIGURE 10. Staggered mesh in three dimensions. Circles indicate points at integral time t'o 
and crosses denote those at intermediate times t"+112. 

etc. The fluxes FX, F", FZ and the electric field components EX, E" and EZ have then 
to be estimated. It should be noted that the averaging processes differ for the various 
components of (pu) and (u A B). The components of u and B themselves will be 
defined over surfaces while the "spot values" of (8.2) now correspond to averages 
along lines through these surfaces. Thus the combination taken will depend on the 
line that is chosen: for the normal field at the centre of a face of the cube in Figure 
11, the numerical scheme merely estimates f (u A B ) * dl taken around the perimeter 
of that face. The final expressions resemble those obtained for two dimensions and 
will not be given here. 

The averaging process depends on how u has been calculated from the equation 
of motion. In some cases, the velocity may be a function of the field B and of p and 
calculable from them [13]. In others it must be found from the equation of motion, 
which can itself be expressed in the conservative form 

(8.3) a- (Pu)= 

(where P is a pressure tensor) analogous to ( 1.1) and ( 1.2) . In that case the funda- 
mental quantities are pinkl and 

(8.4) (pU>J 1 = 8A~y~ ff ||p(x, y, z, tnz y, z, C) dx dy dz 

and u must be evaluated from them. 

9. The Treatment of Polar Meshes. All that has been said so far applies equally 
to polar meshes. It need only be remembered that the dimensions of the opposite 
sides of a box are no longer identical. Fluxes and circulations must therefore be 
weighted accordingly. Consider, for example, polar co-ordinates (r, 6) in two di- 
mensions. We define quantities at the points (r8, ok) on a mesh with spacing Ar, Ag 
and tthveitocberein min that the arc lengths (rcrAo) and (rf+ceo ) are unequal. 
Thus, for example, (e5.7 ) becomes 

(9.1) not - pive) 4rher 

The averaging p- rJo1Fs e o ,kh ) ow 2AO + (h j ,kcl - Fjt ,k- 1 ) * 2Ar]qAt. 
The equations for a magnetic field require similar alterations. 
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In three dimensions, the scalar equation expressed in cylindrical polar coordi- 
nates (r, 0, z) resembles (9.1) but the expressions for the magnetic field are more 
involved. For the z-component, K, of B we have 

(9.2) (KXk I - K.1k, 1) * 4rjArAO 
- -[(rj+lE+1,k,E l - rJ .1E-l,k, I) * 2A6 - (Er,k+1, I - Er,k-1, I) * 2ArI] At. 

The corresponding equations is spherical polar coordinates are more complicated. 

10. Summary. We have throughout preferred to integrate the diff erential equa- 
tions over elements of space-time defined by mesh points. The values of variables 
in the differential equations are then replaced by averages, whose definition must 
be borne in mind when formulating the difference schemes. This approach has 
enabled us to devise schemes with a high order of accuracy, in a consistent manner. 

For example, the value of density stored at a point is defined as the average 
over a box surrounding that point, at a given time. After a time step the increment 
in the density is obtained by evaluating the total flux of matter into the box during 
that interval. Similarly, a component of magnetic field is defined as the average 
through an element of area at a given time. The increment in the field is then the 
integral of the e.m.f. around a line enclosing the element, taken over one time step. 

Thus we can distinguish between fundamental quantities, which are stored, and 
the fluxes which change their values. The former are defined as averages over 
volumes or surfaces (in three dimensions) while the latter are averages over surfaces 
or lines and over time. Simple boundary conditions then imply that the fluxes 
vanish at the walls. Our problem has been to compute the fluxes from the funda- 
mental quantities in such a way that mass and magnetic flux are exactly conserved 
and a sufficiently accurate solution is produced. Adequate accuracy is obtained 
by estimating fluxes with schemes that are correctly centred in time. This favours 
the adoption of a staggered mesh, where fundamental quantities are defined at the 
points where they are required. Making a Taylor expansion in the space coordinates 
enables us to choose schemes that minimize the coefficients of fourth order terms 
in the mesh spacing. The latest values of fundamental quantities available at each 
mesh point can conveniently be incorporated into partially implicit methods. 
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APPENDIX. 

Fourth order difference schemes on a rectangular mesh in two dimensions. The 
sweep proceeds over increasing values of j and k. We set 

At L At 
X- v 

Ax2 

At At 
12Ay Ay2 

and write 
n+l12 1 / n+1/2 n+1/2 

'xPj,k =4APj+2,k Pi-2,k ) 
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etc. as an estimate of the first derivative. Then 

n=I Bp k +C + D + E 
Pjk 

P A 

where 

A = 1 - (Xuj+lk + YVj,k+l) + (L + M) 

B = 1 - (Xuj-lk + YVj,kl) - (L + M) 

C = X[Uj-l,k(8pj-1,k - Pj-2 k) - Uj+lk(8pj+1,k - Pj+2,k) 

+ p+1/2. __ 
n+/ + 2 ( vj-1,k *yU j-l ,k - P+l ,k * yVj+l ,k) ] 

D = Y~v.(8pn+1/2 n+1 n 
- 

/ 
D Y[Vj,k-1(8 P,k-1 - Pjk-2) - Vjk+l(8 pn+l P2kn 

+ 2(6,p7kl12. &xVjk-1 - aSPi2k+l - &xVjk+l)] 

n+ 
= 

/2 + pn+1/2) + M(p+/2 n++ /2 E =L( Pi+l,k + P-1,k ) (Pj,k+l + Pisk-1) 

We integrate 

n+l BHk + C' +D' +E' 
Hjk A 

and set 

n+l n A /x nl nl 
G , = G _-2,k + A (H&-1 - HT&k+0) 

from div B = O. 

A' = 1- (Xu?+lk + Ysivk+l) + (L + M) 

B' = 1- (XUJ-lk + Yv7,k-l) - (L + M) 

C' -X[+ 1, k(8H +lk2 - Hn+2,k) - Ujylk(8Hf-2,k Hj-2,k) 

- 8 (v ,kG n+ /2 
- v jyGn+l /2 ) 

+ (Vj'1,k 
- Vj-lk) (Gj-lk-1 + Gj+lk+l)] 

D = -Y[vj+l ,kHk-2 - Vxj1,kHi k+2] 

E = L(Hn+12 ? Hj+1/2) + m(Hynk+12 + Hn+1/2) 
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